Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation.
نویسندگان
چکیده
This study presents the manufacture of highly porous hydroxyapatite by a novel technique that employs the foaming of suspensions prior to the in situ polymerization of organic monomers contained in the compositions. This method produces strong gelled bodies with up to 90% porosity that can withstand machining in the green state. Complex-shaped components can be obtained if the process comprises casting in one of the processing steps. The organic additives are eliminated at temperatures above 300 degrees C, and sintering is carried out for consolidation of the ceramic matrix. Spherical interconnected cells with sizes ranging from 20 to 1000 micrometer characterize the porous structure, depending on the specimen density. Cytotoxicity tests were conducted on extracts from sintered HA foams based on a quantitative method of cell colony formation and the determination of cell death after indirect contact of the porous material with mammalian cells. This in vitro test of biological evaluation revealed that the original purity of the biomedical-grade hydroxyapatite powder was affected neither through processing nor by the employed reagents.
منابع مشابه
Fabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کاملCytotoxicity and Genotoxicity Evaluation of Fluorapatite/bioactive Glass Nanocomposite Foams With Two Various Weight Ratios as Bone Tissue Scaffold: an in vitro study
The optimization of biomaterials’ biodegradation rate similar to tissue regeneration, is one of the main goals of tissue engineering. However, the necessity to assess their possible toxicity is always considered. The aim of this study was cytotoxicity and genotoxicity evaluation of fluorapatite/bioactive glass (FA/BG) nanocomposite foams with two various weight ratios to determine the optimal c...
متن کاملPorous hydroxyapatite for artificial bone applications
Hydroxyapatite (HA) has been used clinically for many years. It has good biocompatibility in bone contact as its chemical composition is similar to that of bone material. Porous HA ceramics have found enormous use in biomedical applications including bone tissue regeneration, cell proliferation, and drug delivery. In bone tissue engineering it has been applied as filling material for bone defec...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملPreparation of aliened porous Ni-GDC nano composite by freeze-casting process
This current study reports preparation of Nickel-Gadolinium doped Ceria (Ni-GDC) composite via controlled unidirectional freeze casting of aqueous-based GDC slurry completed with nickel infiltrated into the porous GDC samples. Gadolinium doped ceria powder prepared by gel-combustion synthesis method. The oxide powder was confirmed to be the fluorite-structured of Ce0.8Gd0.2O1.9 solid solution b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2000